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Townsend [Townsend, The Structure of Turbulent Shear Flow (Cambridge University
Press, Cambridge, UK, 1976)] hypothesized that the logarithmic region in high-Reynolds-
number wall-bounded flows consists of space-filling, self-similar attached eddies. Invoking
this hypothesis, we express streamwise velocity fluctuations in the inertial layer in high-
Reynolds-number wall-bounded flows as a hierarchical random additive process (HRAP):
u+

z = ∑Nz

i=1 ai . Here u is the streamwise velocity fluctuation, + indicates normalization in
wall units, z is the wall normal distance, and ai’s are independently, identically distributed
random additives, each of which is associated with an attached eddy in the wall-attached
hierarchy. The number of random additives is Nz ∼ ln(δ/z) where δ is the boundary layer
thickness and ln is natural log. Due to its simplified structure, such a process leads to
predictions of the scaling behaviors for various turbulence statistics in the logarithmic
layer. Besides reproducing known logarithmic scaling of moments, structure functions, and
correlation function 〈uz(x)uz(x + r)〉, new logarithmic laws in two-point statistics such as
[ 3

2 〈u2
z(x)u2

z(x + r)〉 − 1
2 〈u4

z(x)〉]1/2
, [ 5

2 〈u3
z(x)u3

z(x + r)〉 − 3
2 〈uz(x)u5

z(x + r)〉]1/3
, etc. can

be derived using the HRAP formalism. Supporting empirical evidence for the logarithmic
scaling in such statistics is found from the Melbourne High Reynolds Number Boundary
Layer Wind Tunnel measurements. We also show that, at high Reynolds numbers, the above
mentioned new logarithmic laws can be derived by assuming the arrival of an attached eddy
at a generic point in the flow field to be a Poisson process [Woodcock and Marusic, Phys.
Fluids 27, 015104 (2015)]. Taken together, the results provide new evidence supporting
the essential ingredients of the attached eddy hypothesis to describe streamwise velocity
fluctuations of large, momentum transporting eddies in wall-bounded turbulence, while
observed deviations suggest the need for further extensions of the model.

DOI: 10.1103/PhysRevFluids.1.024402

I. INTRODUCTION

High-Reynolds-number wall-bounded flows are commonly encountered in many engineering,
environmental, and geophysical flows. A robust feature of such flows is the presence of the
logarithmic region, a region where neither the viscosity nor the bulk flow appears to be dynamically
dominant [1–3]. One particularly effective conceptual model of wall turbulence dates back to
Townsend [4], who hypothesized that the logarithmic region consists of space-filling, self-similar
eddies, as shown schematically in Fig. 1(a), whose sizes scale with their distance from the wall. This
attached eddy hypothesis has proven to be quite useful in providing (nontrivial) estimates on the
scalings in various turbulence quantities, including turbulence intensity, Reynolds stress, single-point
moments, two-point statistics, pressure fluctuations, etc., in wall-bounded flows at high Reynolds
number [4–11]. The hypothesis has also guided studies of flow structures [12,13], including near-wall
hairpins [14–18] and coherent vortex packets or clusters [19–25], and has provided insights into
modeling of flow spectra [26–28].

Therefore it is not surprising that many efforts have been devoted to various formal mathematical
formulations of the Townsend attached eddy hypothesis [4,5,10,29,30]. While details might vary
among the various formalisms, all attached eddy models are based on an eddy population density
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FIG. 1. (a) Sketch of the hypothesized structure of attached eddies in wall-bounded flows. The eddy
population density is inversely proportional to the wall distance. On a two-dimensional plane cut as shown
here, on average, the number of visible eddies doubles as the size halves. (b) A more explicit representation of
the additive process.

that is inversely proportional to the wall distance, i.e., P (z) ∼ 1/z, which is a direct consequence of
the space-filling property of the hierarchical attached eddies [10].

A particularly simple version of the attached eddy hypothesis was invoked in Ref. [9] to make
predictions of logarithmic scaling in single-point high-order moments. Discretizing the wall normal
distance logarithmically and counting the number of attached eddies that affect a generic point at
height z, namely, adding the contributions from the eddies at all heights above z up to the largest at
the top of the boundary layer (at z ∼ δ), one obtains

Nz ∼
∫ δ

z

P (z) dz ∼ ln(δ/z). (1)

The velocity at a point at height z is assumed to be an additive superposition of the velocity induced
by each attached eddy that overlaps the particular point of interest. Taking into consideration the
self-similar property of the assumed attached eddies and assuming that they are noninteracting, the
instantaneous velocity at this generic point is simply modeled as a sum of identically, independently
distributed (i.i.d.) random additives ai with 〈ai〉 = 0. Denoting the instantaneous streamwise velocity
normalized by friction velocity (or velocity fluctuation if its time mean is subtracted) at height z as
u+

z , a simplified attached eddy model can be written as

u+
z =

Nz∑
i=1

ai. (2)

The various a’s are organized hierarchically on a treelike structure as depicted in Fig. 1(b), with a1

corresponding to the largest eddy that overlaps the entire hierarchy, a2 taking on different values
at each of the smaller eddies (two shown, but four on the plane), and so forth. Besides Ref. [9],
this hierarchical additive model was recently used in Ref. [31] to provide quantitative estimates
on the scalings of single-point, two-point moment-generating functions in high-Reynolds-number
boundary layers. The predicted power-law behaviors in the single-point 〈exp(qu)〉 and two-point
〈exp(qu + q ′u(x + r))〉 moment-generating functions with respect to the wall normal distance z/δ

and two-point displacement r/δ were confirmed in experimental measurements in Ref. [31]. Here
we apply the formalism to elucidate logarithmic scaling laws of particular two-point moments that
scale with ln(δ/r).

One of the major results Townsend arrived at is the logarithmic scaling in the variance of
streamwise velocity fluctuation: 〈

u2
z

〉 = A1 ln(δ/z) + B1, (3)
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where A1 ≈ 1.26 is the Townsend-Perry constant [3,32–35], B1 is a (flow-dependent) constant, 〈·〉
indicates ensemble averaging, and we have dropped henceforth the superscript + (conventionally
used to indicate normalization by wall units). A considerable amount of empirical evidence both
from laboratory experiments and from numerical simulations has been reported recently in support
of the logarithmic scaling shown in Eq. (3) [34,36].

As an example of the application of the hierarchical random additive process (HRAP) based
attached eddy model, the basic scaling of Eq. (3) using Eqs. (1) and (2) can be derived simply as
follows: given that ai’s are i.i.d., squaring both sides of Eq. (2) leads to〈

u2
z

〉 = Nz〈a2〉 ∼ ln(δ/z), (4)

thus recovering the logarithmic scaling in 〈u2
z〉.

While the HRAP enables us to obtain very rapidly scaling behavior (functional forms), evaluating
prefactors and additive coefficients requires more detailed modeling assumptions and more extensive
calculations. For instance, in the formalism developed in Refs. [10,11], where the arrival of an
attached eddy at a generic point in the flow field is assumed to be described by a Poisson process,
rigorous, step-by-step derivations can be carried out to derive generalized logarithmic laws in
even-order moments of single-point velocity fluctuations and even-order moments of structure
functions; i.e.,

〈(uz)
2p〉1/p = Ap ln(δ/z) + Bp,

〈(uz(x + r) − uz(x))2p〉1/p = Dp ln(r/z) + Ep, (5)

where Ap, Bp, Dp, and Ep are coefficients. Empirical evidence for the logarithmic laws shown in
Eqs. (5) was reported in Refs. [9,11,37]. Hereafter, we focus mainly on the scaling behavior and do
not emphasize the typically flow-dependent coefficients Bp and Ep.

We show that predictions of the generalized logarithmic laws in Eqs. (5), as well as for the standard
two-point correlation function S1 = 〈uz(x)uz(x + r)〉 = A1 ln(δ/r) + B ′

1, can be made quite easily
using Eqs. (1) and (2). Moreover, the HRAP model is used in this paper to predict the existence of a
new family of logarithmic laws such as

S2 =
[

3

2

〈
u2

z(x)u2
z(x + r)

〉 − 1

2

〈
u4

z(x)
〉]1/2

= A2 ln

(
δ

r

)
+ B ′

2, (6)

S3 =
[

5

2

〈
u3

z(x)u3
z(x + r)

〉 − 3

2
〈uz(x)u5

z(x + r)〉
]1/3

= A3 ln

(
δ

r

)
+ B ′

3, (7)

S4 =
[

1

10

〈
u8

z(x)
〉 + 9

10

〈
uz(x)u7

z(x + r)
〉 − 49

10

〈
u2

z(x)u6
z(x + r)

〉

− 21

10

〈
u3

z(x)u5
z(x + r)

〉 + 70

10

〈
u4

z(x)u4
z(x + r)

〉]1/4

= A4 ln

(
δ

r

)
+ B ′

4. (8)

Note that the two-point structure functions studied in Ref. [11] depend on ln(r/z). It will be
shown that the new generalized two-point correlations depend on ln(δ/r) instead, i.e., scaling
with the boundary layer thickness rather than the local scale z. Invoking Taylor’s frozen turbulence
hypothesis [38], experimental hot-wire turbulence measurements from the Melbourne High Reynolds
Number Boundary Layer Wind Tunnel (HRNBLWT) [39] are analyzed to test the existence of such
new logarithmic laws.

The rest of the paper is organized as follows. In Sec. II, the HRAP model is used to derive various
generalized logarithmic laws. Empirical evidence for the new laws is presented in Sec. III. In Sec. IV
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it is shown that similar scaling can be recovered more rigorously using the formalism developed in
Ref. [10]. Conclusions are given in Sec. V.

II. HIERARCHICAL RANDOM ADDITIVE PROCESS

In this section, the HRAP is used to predict the scalings of various turbulence quantities in the
logarithmic region. We assume the flow is at high Reynolds number and we consider only streamwise
velocity fluctuations. Unless stated otherwise, wall units are used for normalization.

In the limit of high Reynolds number, Nz ∼ ln(δ/z) tends to large values and the central limit
theorem applied to the sum in Eq. (2) leads to

uz = N (μ = 0,σ 2 = Nz〈a2〉), (9)

where N (μ,σ 2) is a Gaussian random variable with mean μ and variance σ 2. As argued in Ref. [9],
Eq. (9) directly leads to 〈

u2p
z

〉 = (2p − 1)!!Ap

1 lnp(δ/z), (10)

where A1 is the Townsend-Perry constant mentioned before. Comparing with Eqs. (5) leads to

Ap
p = (2p − 1)!!Ap

1 . (11)

As shown in Ref. [9], data support the logarithmic scaling of Eq. (10) but show that Ap is smaller
than the Gaussian prediction of Eq. (11).

Next we consider the velocity at a point P ′ above P and at a distance z1 from the wall, z1 > z.
Because an attached eddy that contributes to the velocity at point P ′ also affects point P , Eq. (2)
directly leads to

uz − uz1 =
Nz∑
i=1

ai −
Nz1∑
i=1

ai =
Nz∑

i=Nz1

ai,

Nz − Nz1 ∼ ln(δ/z) − ln(δ/z1) = ln(z1/z). (12)

Following the same arguments that lead to Eq. (10), Eqs. (12) directly lead to〈(
uz(x) − uz1 (x)

)2p〉 = (2p − 1)!!Ap

1 lnp(z1/z). (13)

Now we consider the velocity at P and a point P ′′ which is at a distance r downstream of P

(as shown in Fig. 1). For small r compared to z, all eddies that affect P similarly affect P ′′. At
a distance r = z/ tan θ , where θ is the inclination angle of a typical attached eddy, P and P ′′ are
different by at most about one eddy (one additive term) and share all eddies above z. As a result,
uz(x) and uz(x + z/ tan θ ), differing by one random additive (the random additive that is associated
with eddies of size z), are approximately equal because Nz = ln(δ/z) is assumed to be large (see
similar argument in Refs. [40,41]). As r further increases P and P ′′ share fewer and fewer common
eddies.

Now let us consider the general case for arbitrary, large r in the context of two-point moments of
the form 〈un

z (x)u2p−n
z (x + r)〉. We decompose the velocity fluctuation at a point into contributions

from eddies of size smaller than r (height smaller than r tan θ ) and greater than r (height larger than
r tan θ ). Let

zr = r tan θ (14)

and define uz\zr
(x) = uz − uzr

, which within the additive model can be regarded as the contribution
to the velocity fluctuation only from those eddies whose size is smaller than r . Then we have〈

un
z (x)u2p−n

z (x + r)
〉 = 〈[

uz\zr
(x) + uzr

(x)
]n[

uz\zr
(x + r) + uzr

(x + r)
]2p−n〉

. (15)
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In the HRAP model, uz\zr
(x) and uz\zr

(x + r) can be considered statistically independent because
eddies of size smaller than zr cannot affect two points that are separated by a distance r . Moreover,
uz\zr

(x) and uzr
(x) are statistically independent [so are uz\zr

(x + r) and uzr
(x + r)] because eddies

of different sizes are not correlated in the current version of the model since all a’s are assumed
independent. Combining these observations and the approximation uzr

(x) ≈ uzr
(x + r), the moments

〈un
z (x)u2p−n

z (x + r)〉 can be evaluated.
When evaluating the products and separating them accordingly at various orders, there seems to

be no compact expression for 〈un
z (x)u2p−n

z (x + r)〉. However, since it is unlikely that there would
be much interest in much higher order statistics than the eighth order moments, we can explicitly
evaluate each combination of p and n for p < 5. As an initial example, we evaluate the standard
two-point correlation function 〈uz(x)uz(x + r)〉 as follows:

〈uz(x)uz(x + r)〉 = 〈(
uz\zr

(x) + uzr
(x)

)(
uz\zr

(x + r) + uzr
(x + r)

)〉
= 〈

uz\zr
(x)

〉〈
uz\zr

(x + r)
〉 + 2

〈
uz\zr

(x)
〉〈
uzr

(x)
〉 + 〈

uzr
(x)uzr

(x)
〉
. (16)

Since the the velocity fluctuation u has zero mean, we obtain

〈uz(x)uz(x + r)〉 = 〈
uzr

(x)uzr
(x)

〉 = A1 ln(δ/zr ) = A1 ln(δ/r) + B ′
1, (17)

where the last equality holds up to an additive coefficient B ′
1 that can depend on, for instance, tan θ .

Defining

Lp,n = lnp−n(δ/zr ) lnn(zr/z), (18)

and following the same procedure used to obtain Eq. (17), and using Eqs. (10) and (13), we have

〈
u0

z(x)u4
z(x + r)

〉 = A2
2L2,2 + 6A2

1L2,1 + A2
2L2,0,〈

u1
z(x)u3

z(x + r)
〉 = 0 + A2

1L2,1 + A2
2L2,0, (19)〈

u2
z(x)u2

z(x + r)
〉 = A2

1L2,2 + A2
1L2,1 + A2

2L2,0,〈
u0

z(x)u6
z(x + r)

〉 = A3
3L3,3 + 15A2

2A1L3,2 + 15A1A
2
2L3,1 + A3

3L3,0,〈
u1

z(x)u5
z(x + r)

〉 = 0 + 5A2
2A1L3,2 + 10A1A

2
2L3,1 + A3

3L3,0,〈
u2

z(x)u4
z(x + r)

〉 = A2
2A1L3,3 + (

6A3
1 + A2

2A1
)
L3,2 + 7A1A

2
2L3,1 + A3

3L3,0,〈
u3

z(x)u3
z(x + r)

〉 = 0 + 9A3
1L3,2 + 6A1A

2
2L3,1 + A3

3L3,0, (20)〈
u0

z(x)u8
z(x + r)

〉 = A4
4L4,4 + 28A3

3A1L4,3 + 70A4
2L4,2 + 28A1A

3
3L4,1 + A4

4L4,0,〈
u1

z(x)u7
z(x + r)

〉 = 0 + 7A3
3A1L4,3 + 35A4

2L4,2 + 21A1A
3
3L4,3 + A4

4L4,0,〈
u2

z(x)u6
z(x + r)

〉 = A3
3A1L4,4 + (

15A2
1A

2
2 + A3

3A1
)
L4,3 + (

15A2
1A

2
2 + 15A4

2

)
L4,2

+ 16A1A
3
3L4,1 + A4

4L4,0,〈
u3

z(x)u5
z(x + r)

〉 = 0 + 15A2
1A

2
2L4,3 + (

30A2
1A

2
2 + 5A4

2

)
L4,2 + 13A1A

3
3L4,1 + A4

4L4,0,〈
u4

z(x)u4
z(x + r)

〉 = A4
2L4,4 + 12A2

1A
2
2L4,3 + (

36A2
1A

2
2 + 2A4

2

)
L4,2 + 12A1A

3
3L4,1 + A4

4L4,0,

(21)

The Ap’s in Eqs. (19)–(21) can be replaced with [(2p − 1)!!]1/pA1 to further simplify the expressions
(not shown here).

We make three observations. First, except for n = 0 and n = p, all Lp,n’s are mixed logarithmic
scalings involving different powers of ln(δ/zr ) and ln(zr/z). At high Reynolds number, as r/z → ∞
(and zr/z → ∞), for δ/zr ∼ O(1), Lp,p becomes the dominant term; as r/z ∼ O(1), δ/r → ∞,
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Lp,0 becomes the dominant term. As a result, in those limits logarithmic scaling can be observed

in quantities such as 〈un
z (x)u2p−n

z (x + r)〉1/p
. This aspect is, however, not further explored here.

Second, for a fixed p, the coefficient in front of the term Lp,0 is A
p
p and is not dependent on n.

Third, the traditionally defined two-point structure functions 〈[uz(x) − uz(x + r)]2p〉 [in Eqs. (5)],
being combinations of 〈un

z (x)u2p−n
z (x + r)〉, i.e.,

〈(uz(x) − uz(x + r))2p〉1/p =
[

2p∑
n=0

Cn
2p

〈
un

z (x)u2p−n
z (x + r)

〉]1/p

, (22)

where Cn
2p = (2p)!/[n!(2p − n)!], can be shown to depend only on the term Lp,p. In order to verify

this, we compute, for example, 〈(uz(x) − uz(x + r))6〉:
〈(uz(x) − uz(x + r))6〉 = 2

〈
u0

z(x)u6
z(x + r)

〉 − 12
〈
u1

z(x)u5
z(x + r)

〉
+ 30

〈
u2

z(x)u4
z(x + r)

〉 − 20
〈
u3

z(x)u3
z(x + r)

〉
. (23)

Substituting Eqs. (20) into Eq. (23) indeed leads to

〈(uz(x) − uz(x + r))6〉 = (
2A3

3 + 30A2
2A1

)
L3,3 = (

2A3
3 + 30A2

2A1
)

ln(zr/z) ∼ ln(r/z), (24)

i.e., one obtains an exact cancellation of all Lp,n’s for n < p. The same cancellations are found
for structure functions of second order, fourth order, eighth order, etc. (not shown here). Hence
we recover the logarithmic scaling in structure functions (such scaling has been explored based on
experimental data in Ref. [11]).

Structure functions thus pick up the logarithmic scaling ln(r/z), i.e., the term Lp,p. The other
term that does not contain mixed logarithmic scalings is Lp,0. We attempt to find combinations of
〈un

z (x)u2p−n
z (x + r)〉 such that all Lp,n, n > 0, cancel except for Lp,0. Formally, for a fixed p, we

attempt to find cn’s such that

p∑
n=0

cn

〈
un

z (x)u2p−n
z (x + r)

〉 = A
p
pLp,0. (25)

The new logarithmic laws in Eqs. (6)–(8) are obtained by solving Eq. (25) for the cn’s. Here, as an
example, we verify S3:[

5
2

〈
u3

z(x)u3
z(x + r)

〉 − 3
2

〈
uz(x)u5

z(x + r)
〉]1/3 = [

A3
3L3,0 + (

45
2 A3

1 − 15
2 A2

2A1
)
L3,2

]1/3
. (26)

Using Eq. (10) (i.e., A2
2 = 3A2

1), Eq. (26) leads to[
5
2

〈
u3

z(x)u3
z(x + r)

〉 − 3
2

〈
uz(x)u5

z(x + r)
〉]1/3 = A3L

1/3
3,0 = A3 ln(δ/r) + B ′

3. (27)

S2 and S4 can be verified in the same manner and again the relation A
p
p = (2p − 1)!!Ap

1 needs
to be used to ensure exact cancellation of Lp,n, n > 0. Notice that the term that remains when
evaluating Si , i = 1,2,3,4, comes from 〈(uz − uzr

)2p〉 = A
p
p lnp(z/r), and the predicted slopes in

those logarithmic laws are directly expressed in terms of Ap (p = 1,2,3,4) and not as (2p − 1)!!Ap
p.

As a result, for a comparison of the slopes predicted in those logarithmic scalings (in Sec. III), we
use the measured Ap’s instead of the Gaussian predictions Ap = [(2p − 1)!!]1/pA1.

Up to here we have derived, using the HRAP model, the previously known logarithmic laws
[Eqs. (5)] and new ones [Eqs. (6)–(8)]. Supporting empirical evidence for the new logarithmic laws
in Eqs. (6)–(8) is presented below in Sec. III.

III. EXPERIMENTAL DATA ANALYSIS

In this section, the logarithmic scalings in Eqs. (6)–(8) are examined using the Melbourne wind
tunnel measurements. The Reynolds number based on boundary layer height and friction velocity is
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FIG. 2. S1 against r/z (top), r+ (bottom) at z+ ≈ 3Re0.5
τ , 700, 1200, and z = 0.10δ. The solid line indicates

the fitted slope. r/δ = 0.4 is indicated with a vertical line.

Reτ = 19 030 (see Ref. [39] for more details of the data set). The analysis focuses on the scaling in
r in the inertial region. The Taylor frozen turbulence hypothesis is invoked to convert the temporal
data from hot-wire measurements to spatial data [38,42].

Statistical two-point moments as defined in Eqs. (6)–(8) are plotted against r+ and r/z at various
heights, namely, at z+ ≈ 3Re0.5

τ , 700, 1200 and z = 0.10δ in Figs. 2–5. Solid lines show fitted
slopes, 1.1, 1.5, 2.0, and 1.8, respectively, for S1, S2, S3, and S4. Compared with the measured Ap

values from Ref. [9], i.e., A1 ≈ 1.2, A2 ≈ 1.8, A3 ≈ 2.4, and A4 ≈ 3.00, given the uncertainty in the
measurements both here and in Ref. [9], the agreement is reasonably good, except for S4. The fit is
conducted within the logarithmic region and averaged over the four wall normal locations. The start
of the logarithmic region is at around z+ = 3Re0.5

τ . No logarithmic scaling as indicated in Eqs. (6)–(8)
is expected at z+ < 3Re0.5

τ , nor above z+ = 0.15δ, which is the end of the logarithmic region [34].
At a specific wall normal location in the logarithmic region, i.e., following Ref. [34], in 3Re0.5

τ < z+,
z < 0.15δ, one expects to observe the logarithmic scalings in Eqs. (6)–(8) in a range of two-point
displacement r that corresponds to flow structures whose elongation is associated with wall distances
z belonging to the logarithmic region. To obtain a crude estimate of this range, we note that an attached
eddy of size h in the vertical direction can affect a distance of h/ tan θ in the flow direction, where θ is
the inclination angle of an attached eddy. At a height z, an attached eddy of height h < z is not relevant
and, therefore, the relevant r range is expected to begin at r > z/ tan θ . At large displacements, by
this argument, the end of the logarithmic scaling occurs at r = 0.15δ/ tan θ . The typically observed
inclination angle of an attached eddy is θ ≈ 11◦–16◦ [43–46]. This leads to an expected range of
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FIG. 3. Same as Fig. 2, but for Sp (p = 2).

logarithmic scaling z/ tan θ < r < 0.15δ/ tan θ , which is approximately 4z < r < 0.6δ. Practically,
the relevant range of r , within which logarithmic scaling can be observed, can differ from this
estimate and can vary depending on the specific statistical quantity under consideration. However,
this estimate is instructive as it correctly points out that the start of the logarithmic scaling in r

depends on z and the end on the boundary layer height. With this understanding, we examine
Figs. 2–5 in detail. First, by plotting against r/z, the starting point of the logarithmic region can be
determined. At z+ = 3Re0.5

τ , slight deviations from logarithmic scaling can be observed for S1 and
S2 from r/z ≈ 2 to the left. For S3 and S4 at z+ = 3Re0.5

τ and for all Si , i = 1, 2, 3, 4, at z+ = 700,
1200, 1900 (z = 0.1δ), logarithmic scalings start at r = z. Hence, r = z is probably a safe estimate
for the start point of the logarithmic scalings. The end of the logarithmic scaling is better determined
by plotting the two-point moments against r/δ. For S1 = 〈uz(x)uz(x + r)〉, the logarithmic scaling
is found to extend at least up to r = δ (and even beyond). For S2 and S3, flattening of the scaling
(decrease in the slope) is found at around r+ = 8000 (r = 0.4δ). The end point of the logarithmic
scalings is therefore around r = 0.4δ for S2 and S3. A lack of data convergence for S4 makes
determining the end point of logarithmic scaling of S4 difficult, but the data are not inconsistent with
the estimate r = 0.4δ. In sum, empirically, the logarithmic scaling can be observed in z < r < 0.4δ.
To ensure the existence of such a region and at the same time ensure that the measurements remain in
the logarithmic region, the analysis must be restricted to heights such that 3Re0.5

τ < z+, z < 0.15δ.
The undulations seen in Fig. 5 at large r are due to a lack of full statistical convergence. Limited by

the size of the data, we therefore do not consider statistics of higher order. As can be seen, the statistics
in Eqs. (6)–(8) follow the predicted logarithmic scaling rather closely, at least within the expected
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FIG. 4. Same as Fig. 2, but for S3.

range of r . In contrast to 〈(u+
z (x + r) − u+

z (x))2p〉1/p
, plotting against r/z does not collapse the data;

instead, by plotting against r+ (or against r/δ) a better collapse is obtained (although evidently not
a full collapse). In Eqs. (19)–(21), neglecting additive constants and equating 〈u2p〉1/p

to ln(δ/z) is
unlikely to cause this lack of collapse because the additive constants can be absorbed as a single
multiplying factor of the outer length scale δ. The lack of full collapse is possibly due to a lack
of exact cancellation of Lp,n, n > 0. Exact cancellation of Lp,n, n > 0, in the framework of the
HRAP depends, for the logarithmic scalings in Eqs. (6)–(8), critically on Ap = [(2p − 1)!!]1/pA1

[see Eqs. (26) and (27)], i.e., on wall eddies being noninteracting and, equivalently, on ai in Eq. (2)
being i.i.d. In reality, eddies clustering can lead to significant correlations among the attached
eddies [23]. Ap can then differ from [(2p − 1)!!]1/pA1, leading to the lack of complete collapse of
the logarithmic scalings at different wall normal heights. Observed slopes in the logarithmic laws
agree reasonably well with the model predictions (considering the uncertainty in the measurements),
which indirectly confirms Eq. (13) [notice Lp,0 = ln(δ/r) is based on Eq. (13)], although some
deviations are observed, especially for high order statistics.

Next we verify the statistical convergence of the moments shown in Figs. 2–5. To achieve
statistical convergence of higher order statistics (sixth and eighth order statistics) one requires larger
amounts of data and it is more challenging as compared to the convergence in lower order statistics
(second and fourth order). Here we examine the premultiplied joint probability density function
(PDF) of uz(x) and uz(x + r). The two plots are relevant for the evaluation of 〈uz(x)u7

z(x + r)〉
and 〈u4

z(x)u4
z(x + r)〉. A representative wall distance z+ = 1400 and a relatively large streamwise
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FIG. 5. Same as Fig. 2, but for S4.

separation r = 0.3δ (which is a more challenging case compared to small streamwise separations)
is considered. Figure 6 shows the premultiplied joint PDF. As can be seen from Fig. 6, the two-point
moments under consideration, which is essentially the area (volume) under the surface, can be
reasonably captured by the amount of data available as the probability density goes to zero at the
high values.

IV. A MORE RIGOROUS DERIVATION OF THE NEW LOGARITHMIC LAWS

In this section, we derive the logarithmic scalings in Eqs. (6)–(8) in a more rigorous manner using
the formalism developed in Ref. [10]. The goal here is to show that the new logarithmic laws are not
dependent on the exact details of the attached eddy formulation but depend on the essential structure
of the model. We only need to show that the attached eddy formulation used in Ref. [10] gives the
same prediction for the two-point velocity fluctuation correlations raised to arbitrary powers [i.e.,
〈un

z (x)u2p−n
z (x + r)〉].

Following Ref. [10], the streamwise velocity fluctuation at a point is expressed as

u(x) =
∑

k

Qx

(
x − xek

hk

)
, (28)

where Qx((x − xek
)/hk) is the streamwise velocity fluctuation at a point x induced by a typical

attached eddy of size hk located at xek
and the sum is over all eddies in the domain. The inclination
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FIG. 6. Premultiplied PDF for uz(x)u7
z(x + r) and u4

z(x)u4
z(x + r) at a vertical height z+ = 1400 and a

streamwise separation r = 0.3δ. u1 = uz(x) and u2 = uz(x + r). The two-point PDF P (u1,u2) corresponds to
the two points u1 = uz(x) and u2 = uz(x + r).

angle of a typical eddy is θ and it follows that the extent of a typical eddy at height zr covers a
streamwise distance r = zr/ tan θ .

Decomposing the right-hand side of Eq. (28) into contributions from eddies of size smaller than
zr and eddies of size larger than zr leads to

u(x) =
∑
hk<zr

Qx

(
x − xek

hk

)
+

∑
hk>zr

Qx

(
x − xek

hk

)
. (29)

Performing the same decomposition on the velocity fluctuation at x + ir , where i is the unit vector
in the streamwise direction, leads to

u(x + ir) =
∑
hk<zr

Qx

(
x + ir − xek

hk

)
+

∑
hk>zr

Qx

(
x + ir − xek

hk

)
. (30)

Following the same arguments that lead to uz(x) ≈ uz(x + r), we have∑
hk>zr

Qx

(
x + ir − xek

hk

)
≈

∑
hk>zr

Qx

(
x − xek

hk

)
. (31)
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Equations (29)–(31) lead to

〈un(x)u2p−n(x + ir)〉 =
〈[ ∑

hk<zr

Qx

(
x − xek

hk

)
+

∑
hk>zr

Qx

(
x − xek

hk

)]n

×
[ ∑

hk<zr

Qx

(
x + ir − xek

hk

)
+

∑
hk>zr

Qx

(
x − xek

hk

)]2p-n〉
. (32)

Expanding the right-hand side of Eq. (32) gives rise to terms like〈[ ∑
hk<zr

Qx

(
x − xek

hk

)]p1〉〈[ ∑
hk<zr

Qx

(
x + ir − xek

hk

)]p2〉〈[ ∑
hk>zr

Qx

(
x − xek

hk

)]p3〉
.

We now recall that Ref. [10] [their Eqs. (18) and (23)] proves that〈[ ∑
k,h1<hk<h2

Qx

(
x − xek

hk

)]2p′〉
= A

p′
p′ lnp′

(
h2

max(z,h1)

)
(33)

by considering the size of the smallest eddy being h1 and the size of the largest eddy being h2. Then,
by using Eqs. (32) and (33), we can recover the predictions for 〈un

z (x)u2p−n
z (x + r)〉 made using

the HRAP formalism [i.e., Eqs. (19)–(21)] and with Eqs. (19)–(21) the new logarithmic laws in
Eqs. (6)–(8) can be verified. This completes the proof of the new logarithmic laws [in Eqs. (6)–(8)]
using the formalism developed in Ref. [10].

V. CONCLUSIONS

New logarithmic laws [Eqs. (6)–(8)] for wall-bounded flows can be predicted if one follows the
HRAP formalism to its logical conclusion. The HRAP model enables us to easily make predictions
about scaling behaviors in turbulence statistics (including conventional moments and the moment-
generating function [31]) in the logarithmic region at high Reynolds numbers. Empirical evidence
supporting the newly predicted logarithmic laws are presented by analyzing the Reτ = 19 030 data
set [39]. We also arrive at the logarithmic laws in Eqs. (6)–(8) using the formulation developed in
Ref. [10] in a more rigorous manner. Those newly found logarithmic laws provide additional support
to the basic hierarchical structure of wall-bounded eddies hypothesized by Townsend and can be
used for model and code validation as well as for discriminating among different simplified models
of wall eddies.

We recognize also that not all flow statistics can be correctly predicted within the present HRAP
framework, even when restricting attention in the logarithmic inertial region. For instance, both the
attached model developed in Ref. [10] and the HRAP used in this work predict a collapse of the
new logarithmic scalings using ln(δ/r) at different wall normal distances at high Reynolds number.
However, the experimental data do not show a full collapse using ln(δ/r) [although the collapse is
appreciably better using ln(δ/r) compared to using ln(z/r); the latter was previously used to collapse
the structure functions 〈(u(z,x) − u(z,x + ir))2p〉1/p

[11]]. It is possible that the discrepancies could
be due to coherent motions in the logarithmic layer. That is to say, a lack of correlations among the
random additive terms may be responsible for the differences between HRAP model predictions and
experimental observations. Besides the lack in accounting for correlations among eddies of different
sizes in the hierarchy, HRAP as presented does not include magnitude modulation of small-scale
velocity fluctuations near the wall by larger-scale eddies further above the wall, a mechanism that
is found to be prevalent in high-Reynolds-number wall-bounded flows [47,48]. However, the “outer
peak” which is responsible for the modulation of the near-wall motions corresponds, in the current
version of the HRAP, to the last step in the hierarchy. One can view the outcome of the HRAP as
the outer scale input to the wall modulation approach [48].
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Hence more refined eddy models and extensions of the HRAP approach including more detailed
physics beyond the simple additive superposition of independent eddy-induced velocity fluctuations
can be considered in the future. We believe that the more advanced statistical diagnostic tools
provided here by the new generalized two-point moments (S1, S2, S3, S4, etc.) can be used to test
those possible extensions.

As logarithmic scalings with respect to the wall normal distance can be found in the even order
moments of the spanwise velocity components, i.e., 〈v2〉 ∼ ln(δ/z), it could be expected that the
spanwise velocity fluctuation should follow a similar additive process, and the derived scalings
here may be observed also for the spanwise velocity. Moreover, because the attached eddies have
a finite span in the transverse direction, those two-point logarithmic scalings are expected to hold
if the two-point displacement is instead in the transverse direction. For the data sets used in this
work, those ideas cannot be studied. Further investigations with additional data should examine
the detailed structure of the spanwise velocity and two-point logarithmic scalings that involves a
spanwise displacements. Based also on previous work [11], while we do expect the logarithmic
dependencies to exist for v, we do not expect to see them for w (the wall normal component).
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